Interannual changes of active fire detectability in North America from long-term records of the advanced very high resolution radiometer
نویسندگان
چکیده
[1] This paper addresses practical issues related to the processing of 1-km National Oceanic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) data for producing a consistent, long-term time series of active fire locations over the Continental United States and Canada. The effects of the interannual changes in measured background temperatures, caused by the orbital drift of the afternoon NOAA satellites and by environmental factors, are investigated. Background temperature changes are analyzed using a time series of monthly mean clear-sky brightness temperatures from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS) Pathfinder Atmosphere (PATMOS) data set at a 1 1 resolution. Examples of target areas over four predominant land cover types, as defined in the International Geosphere-Biosphere Programme (IGBP) global 1 km data set, are presented. The results indicate that over forests (defined as >60% tree canopy cover) the contrast between nonburning background and fire pixels is nearly always sufficient for successful fire detection. Over nonforested areas, however, the low saturation temperature of the mid-IR channel on the NOAA 7 to NOAA 14 satellites often sets a physical limit to the separation of valid fire pixels and false ones. Moreover, the severity of this effect changes over the years with the changing background temperatures. The results suggest that because of the potential spurious trends in the number of fires, nonforested areas be excluded from the multiyear analysis. However, a detailed assessment of the emissions from nonforest fires is needed to quantify the effect of this on continental-scale emission estimates.
منابع مشابه
Evaluation of algorithms for fire detection and mapping across North America from satellite
[1] This paper presents an evaluation of advanced very high resolution radiometer (AVHRR)-based remote sensing algorithms for detecting active vegetation fires [Li et al., 2000a] and mapping burned areas [Fraser et al., 2000] throughout North America. The procedures were originally designed for application in Canada with AVHRR data aboard the NOAA 14 satellite. They were tested here with both N...
متن کاملVariability of the Seasonally Integrated Normalized Difference Vegetation Index Across the North Slope of Alaska in the 1990s
The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) da...
متن کاملDetection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California
Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ec...
متن کاملFusion of LST products of ASTER and MODIS Sensors Using STDFA Model
Land Surface Temperature (LST) is one of the most important physical and climatological crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...
متن کاملDevelopment and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR
Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire emissions. Using the dail...
متن کامل